
XML encoding techniques for storing XML data  
on memory limited (mobile) devices. 

 
David A. Lee 

 
Epocrates, Inc 

727 Poplar Lane 
Jasper, IN 47546 

dlee@epocrates.com 
 

1 Biography 
David Lee has over 20 years experience in the software industry responsible for many 
major projects in small and large companies including Sun Microsystems, IBM, Centura 
Software (formerly Gupta.), Premenos, Epiphany (formerly RightPoint), WebGain.  As 
senior member of the technical staff of Epocrates, Inc., Mr. Lee is responsible for 
managing data integration, storage, retrieval, and processing of clinical knowledge 
databases for the leading clinical information provider.   Key career contributions include 
Real-time AIX OS extensions for optimizing transmission of real-time streaming video 
(IBM), secure encrypted EDI over internet email (Premenos), porting Centura Team 
Developer, a complex 4GL development system, from Win32 to Solaris (Gupta, 
Centura), optimizations of large Enterprise CRM systems (Epiphany), implementation of 
ecommerce systems for on-demand digital printing and CD replication (Nexstra). 

 

2 Abstract 
Epocrates is an industry leader in providing clinical references on mobile devices.   Key 
constraints for storing content on handheld devices are small memory footprint and 
limited CPU power.   Epocrates clinical content is 'rich data' requiring structural and 
presentation markup to be displayed, in addition some data sets are quite large pushing 
the limits of handheld devices.   Some handheld operating systems (such as Palm/OS) 
have challenging performance characteristics for memory and storage formats, as well as 
limited display capabilities which require creative solutions for effective and efficient 
presentation of content.   Commonly available tools for parsing and managing XML or 
HTML often perform miserably on handheld devices.  Epocrates has selected "XText" 
encoding and compression to distribute clinical data on handheld devices. 

 
This presentation is a case study of Epocrates' attempts to solve these problems.   Initially 
we implemented a simplified "Rich Text" markup language as an attempt to bypass the 
size and performance problems with parsing XML on handheld devices.  This early 
implementation lead to multiple problems and "dead ends" as the requirements evolved.   
Eventually a new XML based representation was developed which has the benefits of the 
concise representation and fast decoding of the simpler format, as well as the further 



benefits of full structural representation, standards based markup and adaptability of 
XML. 

 
This new encoding format (we call "XText") uses a hybrid of  SAX Encoding and 
compression to produce a very efficient encoding of XML which is extremely fast and 
simple to decode.  Presented are the real life lessons learned in the evolution of the 
format as well as techniques, examples, and sample code for producing an efficient 
encoding scheme for XML tailored to the constraints of handheld devices.  
Implementation is simple and can be coded in any language that can perform binary IO.    

3 Introduction 

3.1 Who Is Epocrates ? 
 
Epocrates is the industry leader in providing clinical references on handheld devices.  
We have 475,000 active subscribers.   Our core products are a subscription based clinical 
publishing reference. 
 

3.2 Common Terminology 
 
There are a few terms which are difficult to avoid, so they are defined here. 
 
• PDA - "Personal Digital Assistant".  In this paper refers to handheld devices, running 

a general purpose operating system, specifically the Palm/OS or Pocket PC OS 
(Win/CE). 

• Monograph - From clinical terminology, refers to the information describing a single 
drug or preparation.   In this paper refers more generally to the information describing 
a single drug, disease, lab test, preparation or other clinical entity.  Roughly 
analogous to a section, or single reference work about a specific topic.  A single data 
source usually provides a collection of Monographs of a particular type. 

• Palm – A PDA device running the Palm/OS operating system 

• PPC - A PDA device running Microsoft's Pocket PC operating system. 

• PDB - From the Palm/OS terminology, a "PDB" is a "Palm Database".  A very simple 
variable length record format with a single 16 bit key index. 

• Syncing - The process of synchronizing a server's database with a PDA's database.   
New records on the server are inserted into the PDA database, modified records 
updated and records which no longer exist on the server are deleted from the PDA. 

• Sync Server - The online servers in the Epocrates data center responsible for 
managing syncing to the PDA's. 

 



4 Core Application 
 
The Core Application for Epocrates is the Essentials product.  Epocrates Essentials a 
multiplatform clinical reference tool which runs on handheld devices. 
 

 
 
 
 
 

5 Background "The Problem Space" 
The "problem" attempting to be solved is that of storing and parsing XML documents on 
handheld devices.   Handheld devices have some special characteristics that can make 
storing and parsing full XML documents cumbersome, and sometimes impractical.  CPU 
Speed, RAM availability and storage space are the main limitations.  In addition there are 
issues of getting the data to the device in an efficient manor.   It was determined 
experimentally that storing and parsing XML in serialized text format was impractical so 
an alternative needed to be found.   There are many implementations of XML 
compression and encoding standards available which were tested including notably 
XMILL and XMLZIP.   In addition, simply applying text compression (both zlib and 



Huffman encoding) was prototyped. The problem with these technologies is that they 
appear to be targeted to a large computing environment.  While they achieve good 
compression (which solves the space resource problem), they are complex and use 
significant RAM and CPU resources which make them non-ideal for handheld devices.  
Furthermore these technologies do not compress well for small data sets.  For example, 
XMILL is documented as not compressing significantly for XML files under 20kbytes.  
Our XML data is usually in the 1-10 kbyte range per device document. 
 
The problem with handheld devices is a composite of resource constraints.   RAM (total 
and heap), CPU, Storage and IO need to be optimized together without excessive use of 
any one.  Furthermore, in our system we need multiple language support due to the server 
running Java and the handheld running C++.  Code simplicity is also a significant issue 
for both debugging complexity and code size issues on handhelds. 
 
Thus we set out for a solution that would solve the key problems in our application and 
also work within the constraints handheld devices. 
 

5.1 Characteristics of the application 
The characteristics of the application with respect to XML usage help drive the design 
requirements for XML processing on the device.   The application runs on handheld 
devices which have very limited memory and typically slow CPU.   Palm devices have as 
little as 8 MB RAM of which an application may have as little as 200k heap space 
available, PPC devices as little as 16MB total ram and 2MB heap.   CPU speed varies 
from 100mhz to 400mhz but this can be very misleading in the case of Palm OS5 
devices.  These devices run an "emulation layer".  A Palm OS5 device running at 400 
MHz can run C application code as slow 100 times slower then native code (a 200mhz 
processor can run application code equivalent to as slow as a 2mhz processor).   Typical 
is 5-20x slower then the same code running in the native processor mode.  Furthermore 
UI response time is very important.  A single page should not take longer then about 
500ms to display before the interface seems sluggish and annoys users.  Memory or 
storage card speed another factor. Some devices use a file system implemented in 
dynamic RAM while others use nonvolatile memory (flash).   Access speed to data can 
vary dramatically depending on the device further complicating design decisions. 
 
Synchronization speed is also a critical factor.  On palm devices, synchronization speed is 
primarily limited to the number of records modified and secondary determined by the 
amount of data transferred.  For example, updating 100 10k records is faster then 
updating 1000 1k records.   On PPC and windows Smartphone's, synchronization speed is 
more closely related to the amount of data transferred, not the number of records.   The 
synchronization protocol does not enable updating of partial records, they need to be 
updated all or nothing.  
 
Depending on the size of the dataset, optimizing for CPU or memory usage may be more 
important and often a compromise must be reached. 



5.2 Characteristics of  XML data 
Epocrates Essentials has multiple sources of data that originate as XML data.  Each data 
source has different unique characteristics.  Some examples include 
 

5.2.1 Disease reference data 
This originates as a large XML document from a third party source.  The XML document 
contains about 1000 “monographs” of 4-30k each totaling approximately 10 MB.  This 
data is a mixture of structural and markup type elements.  The schema is fairly complex, 
but no namespaces or Unicode data is used. 
 

5.2.2 Message text  
Message text data is created as XML documents using a custom schema designed for 
displaying on handheld devices.  About 100 messages average 1k each are used.  
Primarily markup type elements (bold, header, lists, links etc).   Special symbols are 
frequently required (such as Copyright, Trademark).  
 

5.2.3 Clinical References articles 
Clinical reference articles originate as Microsoft Word documents written by outside 
authors are translated into XML documents.   20 to 100 XML documents per article 
averaging 4k each.   Primarily markup (mixed) element content with some structural 
elements. 
 
 

5.3 Why XML on the device ? A brief history 
 

5.3.1 Proprietary Markup 
Initial implementation for representing markup on the device considered HTML and 
XML.   Both were rejected as reasonable implementations. 
 
Early performance tests with XML showed it to be very slow to parse on slow devices 
(Such as the Palm M500).  It was also considered to be too large for small memory 
footprint devices (2x to 4x space increase due to text serialized form for XML).   It was 
also considered to be too complicated for our needs.   The main reason, however, was 
human not technical.  There were simply no "XML Advocates" on the development team, 
it was considered a foreign "unknown" technology. 
 
HTML, likewise, was rejected.  Like XML, it was complicated and slow to parse. Also 
HTML tied us into the HTML markup schema which was not a perfect fit for the type of 
markup our applications needed.   For example, we needed syntax for Popup windows 



and for inter-application jumps (not using URL's) which were difficult to model using 
HTML. 
 
Finally an in-house markup language was invented.  At first it seemed a good idea.  The 
language was roughly "RTF Like" in that it was full of slashes and single letter escape 
sequences.   An example looked like this: 
 

/Bbold/btext/L/Anc32/aJump to app/l/Hheading/h 
 

This worked well, for a while.  The parser was small and efficient; the markup was 
simple and concise.  However in time, the predictable happened ... requirements grew 
beyond the ability of the design to accommodate. 
 
 

5.3.2 XML Revisited 
At this point the future of the in-house markup was reconsidered.  It had grown to have 
many problems.    It was too complicated to parse,  no one could understand the code or 
complex documents.  Furthermore, the simplistic design, which was good at the 
beginning, was too difficult to extend.  For example, adding tables with cells was very 
tricky to merge into the existing structure in a way that anyone could comprehend. 
 
Therefore we reconsidered XML.  If the performance and space issues could be resolved, 
the fundamental architecture that XML provides would solve many of our problems.  
Primarily it is well defined and extensible for future (as yet unknown) requirements 
 
 
 
 

6 Architecture 
The architecture chosen for our use case involved a combination of deign and 
implementation choices with an attempt to balance the constraints of the device.  Much of 
this architecture is achieved by simplification of the XML sent to the device, and by 
offloading many of the 'traditional' XML processing tasks to the server. 

6.1 Focus on Parsing, not creating 
In our use cases, XML is only delivered to the device, never constructed on the device.  
Thus all code for creating XML can be eliminated from the device.  XML creation time is 
therefore not a factor in the design.    
 
The final representation chosen is very simple, and could be created on the device 
efficiently if the XML follows the same design simplifications used for parsing. 
 



6.2 Simplify Schemas 
Some feature of a fully compliant XML parser are simply never used in a vast majority of 
real world XML documents.  These features can add extra code size, memory and CPU 
usage on the device if fully implemented on the device.   A first step is to attempt to 
identify how to simplify your XML data to remove potentially expensive or complicated 
features.  This could be done by simply recognizing that certain features are never used, 
or by transforming the source document into a simpler schema that guarantees the design 
choices.    Things to look for to simplify and speed up your implementation include 
 

6.2.1 Unicode or UTF8 support 
 
Although the algorithm is simple, performance tests show that converting UTF8 to 
Unicode is a very expensive part of parsing XML data.  Furthermore, not all devices 
support Unicode, for example Palm OS natively supports only 8 bit characters and a 
subset of the ISO8859-1 character set.  Implement Unicode support not only requires 
parsing the UTF8 sequences, but also implementing multiple fonts and storing either 
Unicode data (as 16 bit words) or a sequence of 8 bit chars with font changing codes.  If 
your can data can be simplified to not require Unicode text, or to only allow it in limited 
places, you will speed up your parser significantly.  
 
If Unicode data is required, but infrequent, one technique can be to transform Unicode 
data on the server into special elements such as <SYMBOL value="1234"/>.    This 'trick' 
moves encoding of Unicode to a slightly higher level then either using UTF8 (or UTF16) 
or XML entities.   By doing this, the code that parses text need not be Unicode aware.  
Note that this only works within element text, not within attribute text. 
 
In our implementation we choose a different strategy, which is to expand all entities in 
the server side parsing and use UTF8 as the encoded format.  In addition, we allow a 
special SYMBOL element for common symbols supported on both palm and PPC (using 
a special font for palm).  However we choose to use UTF8 only for element text, not 
attribute text.   This choice was made because in the schemas we are using, attribute text 
is never used for any text values that require Unicode so it is a slight performance 
improvement to use ISO8859-1 encoding instead of UTF8 for attribute text. 
 

6.2.2 Simplify your schema 
The more elements and attributes the more complicated your device parser needs to be.  
Consider reducing the number of elements and attributes by using a schema on the device 
that is a simplification of the original document.    Some XML features like namespaces 
may be able to be completely eliminated.   Often XML data designed for exchange across 
organizations is very complex because it needs to encode a lot of information that cannot 
be assumed, and hence must be described explicitly.    When deploying data to a 
handheld, the case is often vastly different.  The server and device have a "trusted" 
relationship.   Many assumptions can be made that can simplify processing.  Consider 
that just because you start out with a complicated document, doesn't mean you have to 



send that same document to the device.  Rather consider what does the device really need 
at a bare minimum.    Stripping out syntactic features (like namespaces) as well as data 
can greatly reduce the size and complexity of the XML. 

6.3 Split parser into pieces 
 
The biggest advantage of server side controlling the deployment of XML to a device is 
that from a data processing perspective, the pair (server plus device) can be viewed as a 
single logical entity.   This means that much of the XML processing can be done on the 
server instead of the client.    Validation, for example, both schema validation and 
application specific data validation can completely be done on the server.   Interestingly, 
so can the actual lexical parsing of the XML text stream.   There is no need for the device 
to actually handle the lexical parsing, which turns out to be the largest expense in SAX 
parsing model. 
 
Consider the Server and Device to be single processing entity and choose to assign 
processing tasks to which part of this pair makes the most sense for your application. 
 
For our system we use the following split of functionality across server and device 
 

• Server 
Schema validation 
XML Simplification 
SAX parsing producing SAX events as a binary stream and an implied "Fixed 
Dictionary"  
Optional ZLib compression 
Packaging for transport to device 
 

• Device 
Decoding the transport record format 
Optional decompression  
SAX Decoding of binary SAX event stream producing SAX callbacks 
 
 



 
 

Schema Validation
Simplification 
SAX Encoding 

[ Fixed Dictionary ]

[Compression] 
Transport Encoding 

Server side

Device side
Transport Decoding

[Decompression] 
SAX Decoding 

6.4 Efficient “SAX Encoding” 
From our performance tests we identified XML parsing (using SAX) to be a very 
expensive part of the total XML processing so we moved the SAX parsing stage into the 
server.  This required some way of representing the output of SAX parsing as data.  SAX 
parsing traditionally produces a set of language callbacks to represent SAX events.     
 
We chose a common technique called "SAX Encoding" which produces a simple byte 
stream from SAX callbacks.   We extended this technique to support an optional "Fixed 
Dictionary", which means that the mapping of element and attribute names to their 
encoded values is not explicit in the data stream.    

6.5 Optional Compression 
If Space is more important then speed then compression of the encoded SAX stream is an 
option.   We used the open source "ZLib" to compress the encoded byte stream because it 
is open source and a reasonable compromise of speed and compression ability.  Being an 
open source version is available in pure "C" code it ports well to both Palm and PPC 
devices, as well as commonly available implementations in Java for server side.   We also 
tested several other compression methods including 'home built' compression 
technologies. 
 
In our uses, the usefulness of compression is mixed.   Due to header and dictionary 
information contained in the output, compression ratios are very small and sometimes 
negative for small input sizes.  As a rough 'rule of thumb' we found compression only 
useful when the input size is over 1kbyte.    Furthermore, decompression performance is 
very expensive on slow devices.  We found compression only useful for cases where 



single documents are fairly large, there are many of them, and application use cases are 
where only one (or very few) need to be decompressed per UI "event" (screen display).  
 

6.6 Pack for transport 
The raw data stream from the output of the SAX Encoding process needs to be packaged 
for transport to the device.  Device databases usually have hard limits of record sizes 
which cant be exceeded.  Some application constraints may need to be applied, (smaller 
record sizes, encoding of binary data, incorporation within a containing data structure of 
stream).    Because the validation and parsing are done on the server side,  some form of 
error checking, checksum, start and end markers etc may need to be incorporated to 
protect against transmission or application errors. 
 
If compression of the SAX encoded data is not performed, some type of transport layer 
compression may be desired.    
 
Finally the data needs to be deployed to the device, usually as part of a "Synchronization" 
but possibly as part of the application install, or via other methods such as SD Cards , 
RPC or web services. 

7 Implementation 
This section describes the actual implementation used for the prototype described in this 
paper, and used for the tests performance measurements presented.  The actual 
implementation used in our production servers and device code is based on this 
implementation, but have been extended somewhat to accommodate application specific 
needs and release quality coding standards.  The same general results are achieved in the 
production system, so it is a useful simplification to describe the prototype system as one 
which can be used to grow into a production quality system. 

7.1 Server side implementation 

7.1.1 Fixed ('offline') Dictionary 
 
The "Dictionary" is a simple association between a text "name" and an integer encoded 
"value".  At minimum these are used to encode element and attribute names, but can also 
be used to encode a known fixed set of enumerated values.   An 'inline' dictionary is a 
dictionary which is embedded in the encoded data stream so that the parser can 
reconstruct the text representation.    An 'offline' (or "fixed") dictionary is an implied 
dictionary.    By 'implied' this means the encoder and decoder (parser) have a built in 
dictionary that does not need to be transmitted along with the data.  This allows a 
significant compression of data for even very small XML files because the element and 
attribute text values are not included in the data. 
 
Our implementation supports both an 'inline' and 'offline' dictionary, however for this 
case study we focus only on 'offline' dictionaries.   This is because the core of the design 
focuses on a tightly coupled encoder/decoder system.   It is entirely realistic that the 



schema is known by both the server and handheld device, and in fact in our applications 
we currently use only one schema ("XText").   Furthermore, for our application, the 
actual text mappings of the element and attribute names are never actually needed on the 
device, only their meaning.  So for the device side, the "Dictionary" is actually just a set 
of #define values used to identify the element and attribute encodings, and on the server 
(encoded) side the Dictionary is a static java structure.   We also extend the concept of a 
dictionary to encompass enumerated attribute values.   For example  <TABLE 
align="right"> .. the attribute value for align may be one of only a few enumerated 
strings.  By encoding enumerated values as integers the same way as element and 
attribute names enhanced compression and parsing speed enhancements can be 
implemented with minimal effort. 
 
These encoding techniques, however, can be easily extended to supply an inline 
dictionary as part of the data stream, at the expense of additional data size and a small 
performance hit. 
 

7.2 Server – SAX Parser 
The server component is the encoder.   That is, it takes the text serialization format of 
XML and produces the encoded binary representation.   This is implemented with the 
following components 
 

• Schema Validation 
The XML is fully validated either via DTD or schema.  This is typically done as 
part of the SAX parsing component as part of the Java XML SDK, but can also be 
done seperately. 
 

• Simplification 
Complex XML constructs can be simplified by the server to optimize device side 
processing.  For example we translate <SYMBOL> elements into Unicode 
representations to avoid lookups on the devices. 
 

• SAX Encoding 
SAX Events (callbacks) are encoded into a simple byte stream which is very 
efficient to parse on the device. 

 
 

7.3 SAX Encoding Simplified ... (server) 
The SAX Encoding is done on the server in Java.   This makes use of a fixed (offline) 
dictionary and some very simple structural markers.    Encoding is done using a SAX 
parser, then encoding each SAX event as a sequence of bytes.  The following simplified 
example demonstrates the bytes produced for each SAX callback.   A few optimizations 
are made to handle special cases of elements with no attributes which are encoded as a 
single byte, and attributes whose contents correspond to enumerated data, which are 
encoded as 2 bytes.  These optimizations are very simple to parse and provide some 



encoding compression at minimal cost or complication, but could be easily eliminated for 
simplicity.   In our application, Unicode is required so all character data  (but not attribute 
values) are encoded in UTF8.    However this turns out to be the largest single 
performance factor in decoding so if possible should be considered for removal. 
 
 
 
static  int kEXT_START_DOC    = 0xFA ; 
static  int kEXT_END_DOC      = 0xFB ; 
static  int kSTART_ELEM   = 0xFC ;         
static  int kEND_ELEM     = 0xFD ;     
static  int kCHARACTERS   = 0xFE ; 
 
startDocument() 
  [kSTART_DOC] 
startElement("name", null,null) 
  [ELEM_ID]   
startElement( "name" , attrs , nattr ) 
   [kSTART_ELEM][ELEM_ID][NATTR] 
   [ATTR_ID]”value”\0[ATTR_ID|0x80][ENUM_ID] ... 
characters( data , count ) 
  [kCHARACTERS]”string”\0 
 
 

7.4 SAX Decoding Simplified ... (client) 
 
On the device, decoding is very simple.  Given a pointer to the encoded data, it is easily 
parsed.  Enhancements could include better error checking, incremental parsing, and 
reading from a file or  IO source instead of directly from memory.   No look ahead or 
look-behind is required for parsing.   No copying of data is required to produce the 
callback arguments which are based on SAX callbacks but modified to fit the parser data 
structures without changing the data.   Since the element and attribute names are encoded 
as integers, they can be passed to the SAX callbacks directly as integers and never need 
to be translated into text (unless the client code needs text representations).  In our 
application UTF8 is used for all character data.   Not shown are details for decoding 
enumerated attribute values, UTF8 decoding and access to the offline dictionary.  
 
 
while( p < end  ){ 
   int c = *p++;  
   switch( c ) {  
   case kSTART_DOC : 
       startDocument(); break; 
   case kCHARACTERS : 
       characters( p ) ; break ; 
   case kSTART_ELEM : 



  // start element 
  ... 
   default : 
        startElement( c ) ; 
} 
 

8 Test Results 
The following test results were obtained by taking an example XML file of 12473 bytes 
in text format.  This XML file is largely text and markup data with some element 
structure and is typical of our application data.   The same application is run on 3 devices 
and using 4 test cases.  The code is written in C and is identical on all 3 devices (2 palm 
and one PPC devices), except for UI component which is only used to start the tests and 
display the results and do not effect the measurements.   Test times are averaged over 
several runs and use the highest precision timers available on the device.  The XML data 
is embedded within the application as a initialized C array to eliminate any file system IO 
as a contributor.   The applications are simple native applications on each device with no 
special optimization beyond the normal compiler options for a "release" build.   In the 
"XML" test cases the EXPAT parser, written in C, is used.   EXPAT is a SAX based 
parser C parser and is considered a good example of industry standard efficient SAX 
XML parser.   For compression, a static library port of the C source public domain 
"ZLIB" compression is used.   The "XText" test cases are encoded using the techniques 
described in this paper, and optionally compressed with the same ZLIB compression 
code. 
 

8.1 Test Cases 
XML Text XML  

parsed with EXPAT  

XML 
Compressed 

Text XML compressed with GZIP 
Uncompressed then parsed with EXPAT 

XText XML SAX Encoded fixed dictionary 
Parsed with C++ SAX Decoder 

XText 
Compressed 

XML SAX Encoded and compressed with GZIP 
Uncompressed then parsed with C++ SAX Decoder 

 

8.2 Test Devices 
The test devices used are standard "off the shelf" handheld devices, two Palm devices and 
one Pocket PC device. 



 
 
TE Palm - Tungsten E 

126 MHz 

M500 Palm - M500 
33 MHz 

PPC Pocket PC  - HP IPAQ 4150 
400 mhz 

 

8.3 Sample Doc (partial) – 12kbytes 
The sample document is a single topic from the "5 minute clinical consult" and looks like 
the following.    
 
 
<book> 
<long_topic> 
<id>TP0002</id> 
<name>Abruptio placentae</name> 
<content> 
<basics> 
<description> Premature separation of otherwise normally implanted placenta. Sher's 
grades: 
1: Minimal or no bleeding; detected as retroplacental clot after delivery of viable fetus 
2: Viable fetus with bleeding and tender irritable uterus 
3: Type A with dead fetus and no coagulopathy; type B with dead fetus and coagulopathy 
(about 30% of grade 3's) 
<systems_affected>  
<system>Cardiovascular</system> 
<system>Reproductive</system> 
</systems_affected> 
<genetics> N/A</genetics> 
.......   12 k bytes  

8.4 Size comparison of XML Encoding 
 
This graph shows the resulting sizes of the XML document before compression, using 
ZLib compression, using XText encoding, and XText encoding plus ZLIB 



compression.

XML Size

0

2000

4000

6000

8000

10000

12000

14000

B
yt

es

Size 12473 4837 9659 4163

XML XML 
Compressed Xtext Xtext 

compressed

 
 
 



 

8.5 Parsing Performance 
 
The first graph shows device parser performance as a measurement of decoding time in 
milliseconds.   XText parsing without compression is about 10x faster then raw XML 
parsing.  Note the absolute speed on the TE and M500 devices, this approches the limit 
for acceptable UI performance Not Including any time for processing (displaying) the 
data.   Adding in the cost of formatting and displaying the data the time becomes 
unacceptable.   Even with compressed XText the parsing time is non ideal, suggesting 
that compression only be used when absolutely necessary.   
 
Of side interest is that the TE times are almost 100x that of the PPC device even though 
the PPC CPU is only 3x faster. (126MHZ vs 400MHZ).    This is due to the emulation 
layer on palm OS5 devices. 
 

Decoding time

0

100

200

300

400

500

600

m
s

TE
M500
PPC

TE 194 331 25 129
M500 328 523 38 183
PPC 2.12 4.27 0.24 1.18

XML XML 
Compressed Xtext Xtext 

compressed

The following is a normalized view of the same data.   Each device is normalized to 1.0 
being the speed for processing the text XML with EXPAT on that device 



Normalized Decoding time

0.00

0.50

1.00

1.50

2.00

2.50

tim
es

 X
M

L 
te

xt
 s

pe
ed

TE
M500
PPC

TE 1.00 1.71 0.13 0.66
M500 1.00 1.59 0.12 0.56
PPC 1.00 2.01 0.11 0.56

XML XML 
Compressed Xtext Xtext 

compressed

 
 

9 References 
 
This project borrowed greatly from ideas and implementation of others including the 
following. 
 
 

• ZLIB compression software 
http://www.zlib.net/ 
 

• XMILL xml compression 
http://sourceforge.net/projects/xmill/ 
 

• XMLZip xml compressor 
http://www.w3.org/2003/08/binary-interchange-workshop/31-oracle-
BinaryXML_pos.htm 
 

 
 


	1 Biography
	2 Abstract
	3 Introduction
	3.1 Who Is Epocrates ?
	3.2 Common Terminology

	4 Core Application
	5 Background "The Problem Space"
	5.1 Characteristics of the application
	5.2 Characteristics of  XML data
	5.2.1 Disease reference data
	5.2.2 Message text 
	5.2.3 Clinical References articles

	5.3 Why XML on the device ? A brief history
	5.3.1 Proprietary Markup
	5.3.2 XML Revisited


	6 Architecture
	6.1 Focus on Parsing, not creating
	6.2 Simplify Schemas
	6.2.1 Unicode or UTF8 support
	6.2.2 Simplify your schema

	6.3 Split parser into pieces
	6.4 Efficient “SAX Encoding”
	6.5 Optional Compression
	6.6 Pack for transport

	7 Implementation
	7.1 Server side implementation
	7.1.1 Fixed ('offline') Dictionary

	7.2 Server – SAX Parser
	7.3 SAX Encoding Simplified ... (server)
	7.4 SAX Decoding Simplified ... (client)

	8 Test Results
	8.1 Test Cases
	8.2 Test Devices
	8.3 Sample Doc (partial) – 12kbytes
	8.4 Size comparison of XML Encoding
	8.5 Parsing Performance

	9 References

