
A command line shell for XML

Based on the philosophy

and design of the

Unix Shells

David A. Lee

dlee@calldei.com www.xmlsh.org

Overview
 Motivation

 Project

 Philosophy

 Syntax and Features

 Architecture

 Demonstration & Examples

 Roadmap

 Contribute

 Feedback / Q&A

2www.xmlsh.org

Motivation
 Unix and Unix Shells were a radical “Paradigm Shift”

 Vastly simplified access to data and processing

 Set of small simple core tools

 Create complexity with hierarchy instead of linearly.

 Almost 40 years later and the core design
fundamentals are being eroded

 Predominant data type is no longer byte/line streams

 Tools and shells have not evolved with the data (XML).

 Working with XML is way too complicated !

3www.xmlsh.org

Project
 Open Source Project

 Open Source / Closed Development

 BSD License “Free Software”

 No commercial restrictions

 Hosted on Sourceforge: xmlsh.sourceforge.net

 Main project site: www.xmlsh.org

 Currently “Pre Alpha”

 Ready for experimentation – not for production

 Syntax subject to change

 Internal API’s subject to change

4www.xmlsh.org

Project
 Pure Java

 Tested on Windows, Mac and Linux

 Should run on any OS that runs Java 1.6

 Dependencies

 Saxon 9

 Log4J

 Optional external OS commands
(rm , chmod , date ... haven't re-invented the wheel)

5www.xmlsh.org

Unix Shells - Philosophy
 What's Great about the Unix Shells

 Thrived almost 40 years and many incarnations

 Ideal balance between CLI and Programming language

6www.xmlsh.org

“Although most users think of the shell as an interactive command
interpreter, it is really a programming language in which each statement

runs a command. Because it must satisfy both the interactive and
programming aspects of command execution, it is a strange language,

shaped as much by history as by design.”

– Brian Kernighan & Rob Pike ,
The UNIX Programming Environment", Prentice-Hall (1984).

Unix Shells – Philosophy
 What's Great about the Unix Shells
 All IO is byte streams (or text line streams)
 Core toolkit designed around a simple universal type

byte or line streams

 wc cat ls sed grep cut paste head read tail awk more ...

 All files and devices are byte/line streams.

 programs consume and produce byte/line streams.

 Core “toolkit” of simple components

 Enables creation of complexity through hierarchal
combination of simpler components.

7www.xmlsh.org

Anatomy of a Unix Shell command

8www.xmlsh.org

int main(int ac , char *av[])

{

 fgets(buf , sizeof(buf) , stdin);

 fputs(buf , stdout);

 return 0;

}

command arg1 arg2 arg3 < file1 > file2

String(s)
Byte Stream

Byte Stream

int (byte)

Unix Shells – Philosophy
 What's Wrong with Unix Shells ?

 Today’s data is no longer primarily text (byte/line streams)
Data is increasingly XML

 Many core commands are not meaningful or
dont work well with XML
 wc cut grep paste tail head sed awk more cat ...

 Why not just new commands ?
 The shell itself is aging ...

made with the assumption that all data is strings or lines.
 Flow control (for / case / read)
 Variables / Environment / IO streams
 Pipelines / Command input/output

 Desire for a cross platform, portable shell

9www.xmlsh.org

xmlsh – Philosophy
 Based on the design principles of the Unix Shells

 Largely backwards compatible syntax to /bin/sh

 Use cases equivalent to /bin/sh

 Where the Unix Shells use strings and byte streams,
xmlsh targets XML documents and infoset streams.

 Scripting with XML data should be as easy and
natural as scripting with text files.

 Someday, all data should be XML …

 But until then, intermixing Text and XML is necessary

10www.xmlsh.org

Anatomy of a xmlsh command

11www.xmlsh.org

class command extends XCommand {

public int run(List<XValue> args, XEnvironment env)

{

transform(env.getStdin() , env.getStdout());

return 0;

}

command arg1 arg2 arg3 < file1 > file2

String or XML

Byte stream or

XML Document Byte stream or

XML Document

int

Syntax and Features
 Core syntax equivalent to /bin/sh

 if ... then ... else ... fi

 while/until ... do ...

 case ... in

 functions

 variable assignment

 Pipes

 subshells and background processes/threads

 IO redirection

 script and external process execution

12www.xmlsh.org

Syntax and Features
 New syntax specific to xmlsh

 XML expressions and variables

<[xquery expr]>

$<(xml producing command)

Example:

foo=<[“hi” , 123 , <elem attr=“attr”>body</elem>]>

bar=$<(xls)

for $i in <[1,2,3,<node/>,”hi”]> ; do echo $i ; done

13www.xmlsh.org

Syntax and Features
 built-in commands similar to /bin/sh

14www.xmlsh.org

: exit

set shift

source (.) test ([condition])

true false

read xread

xwhich xenv

echo cd

jobs wait

Syntax and Features
 internal commands (supplied with xmlsh)

15www.xmlsh.org

xcat xcmp

xls xpwd

xpath xslt

xquery xsplit

xed xversion

.... Many more to come ...

xmlsh Features
 User commands

 Can integrate directly to xmlsh and run within the same
JVM and participate in internal architecture.

 External Commands

 Can execute any external command supported by the OS

 Can pipe into and out of external commands, same as
internal commands.

16www.xmlsh.org

Architecture
 Source is 100% pure Java using JDK 1.6

 Parser implemented with javacc

 Logging via log4j

 XSLT and XQuery from Saxon

 XQuery heavily used internally

17www.xmlsh.org

Architecture
 Variables

 Dynamically typed variables (text , xml)

 Take on the type of their assignment expression

 x=“foo” # string

 x=<[“foo”]> # xml

 XML type is really a saxon “XdmValue”

 atomic type

 item type

 sequence

 Anything that XQuery can produce

18www.xmlsh.org

Architecture
 Pipes

 Pipeline commands run as separate threads

 Pipe is a Currently a text pipe
(XML is text serialized)

 Future – XML native pipes – binary or event serialized
Suggestions Welcome !

 Internal/builtin commands in separate threads

 External commands in separate processes

19www.xmlsh.org

Architecture
 Built-in, Internal, and User commands run in the JVM

 Access to native representations for shell environment

 Access to same runtime (saxon, log4j etc)

 XML data held as Saxon trees not text

 Participates in multithreading

 Background threads (cmd &)

 Piping (cmd | cmd | cmd)

 Arguments and variables passed in internal form
(not converted to text)

20www.xmlsh.org

Architecture
 External commands

 May run any OS command (cp mv ls chmod gcc ...)

 xmlsh is not a replacement for the OS layer or commands

 External Commands run as a sub process

 Piping to and from external command
Freely intermix internal and external commands

 xquery | sum

 xls | cat | xcat

21www.xmlsh.org

Problems and Limitations
 Javacc vs yacc, LL(1) vs LALR(1)

 POSIX sh specs are LALR, challenging to translate to LL

 Some syntax difficult to implement easily/correctly

 Java runtime instead of Unix OS layer

 Threading instead of processes

 No real concept of File Descriptor (numbers like 0,1,2,3)

 Console IO is limited

 Cannot run console sub-processes which share stdin.

 No good tty interrupts

22www.xmlsh.org

Examples
 Basic sh-like syntax

23www.xmlsh.org

dir=/output

for file in *.xml ; do

xquery –f /path/pass1.xquery -i $file |

xslt -f /path/pass2.xsl –i > $dir/$file

done

 Simple xml tools

xcat *.xml | xpath „//book[@author=“John Doe”‟

Examples
 XML and text Variables

 XML construction syntax (XQuery based)

24www.xmlsh.org

A= ”text”

XVAR=<[

<foo attr= ”bar”>

{$A}

</foo>

]>

echo $XVAR > file.xml

Examples
 Reusable parsed XML Documents

 XML Sequences in for loops

25www.xmlsh.org

xread doc < file.xml

for i in <[for $x in 1 to 1000 return $x]> ; do

xquery –i $doc ‟//part[@num=$i]‟ > out${i}.xml

xpath –i $doc ‟//part[@num=$i]/@title‟ >> titles.txt

done

Roadmap
 Currently Pre-Alpha – Started Nov 2007

 To go to alpha ...

 Resolve core syntax questions

 Example: should $* be a string or sequence ?

 Example: should echo produce XML or Text ?

 Clarify Philosophy

 What xmlsh Is and Is Not – define scope

 Clarify use cases

 Zero defects in current codebase

 Complete test cases

 Solicit peer comments
26www.xmlsh.org

Contribute
 Try it out !

 Report Bugs

 Discuss / Forums

 Use cases

 Design Discussions

 Enhancements

 What do you like ? Why ?

 What don't you like ? Why ?

27www.xmlsh.org

Feedback / Q&A / Demo

28www.xmlsh.org

